
On Finite Integrals Involving Trigonometric, 
Bessel, and Legendre Functions' 

By Richard L. Lewis 

Key Words: Finite Integrals, Bessel Functions, Legendre Functions, General- 
ized Hypergeometric Functions. 

Abstract. A finite integral involving the product of powers of trigonometric 
functions, up to two associated Legendre functions, and zero or one Bessel function 
is evaluated. When certain combinations of the otherwise complex function param- 
eters are integers, the resulting expression becomes greatly simplified. So restricting 
the parameters, this still quite general case may be transformed into four canonical 
forms, each of which admits rapid convergence of the only nonterminating series in 
the expressions. Finally, closed form expressions are obtained for a number of 
special cases. e 

In some recent work by the author on boundary-value problems, it became 
necessary to evaluate finite integrals containing the products of associated Legendre 
functions in the integrand. Due to the large amplitude oscillations of these functions 
over the interval of integration, numerical quadrature techniques proved unreliable. 

A multiple series expression for the integral under consideration is presented, 
and then transforms of an otherwise rather untractable expression are introduced in 
order to obtain computable expressions when certain combinations of the param- 
eters involved are integers. In general, however, the parameters (p, a, v, b, gy, a X, A) 
have arbitrary complex values, provided they are so restricted as to allow the integral 
to exist. The integral considered then is 

I = oX(-2)rj(bl- 2)1/2)Pp -,(X)p -;g()dX I = x(l - x )J(b(l - 

(1) 0 

Re (p) > -1, Re (a) > -1, 

where Px1'(x) is the associated Legendre function and J,(x) is the Bessel function 
of the first kind. The Bessel function is a limiting case of a Legendre function 
[1, Vol. II], hence its inclusion in the integrand. The necessary conditions for the 
existence of the integral are stated in (1), where the derived parameter is 

a =f + (v + # + a)/2- 

Upon substituting x = cos 0 in (1), the integrand becomes a product of powers of 
trigonometric functions, a Bessel function and two associated Legendre functions. 
Such a substitution will henceforth be considered obvious. 

Since the formal derivation of the multiple series representation of (1) parallels 
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exactly the treatment by Barnes [2] of a simpler case, the details of the derivation 
are omitted. Briefly, the procedure is to express the integral (1) as a contour integral 
hugging the branch cut. The special functions are expressed as Mellin-Barnes type 
integrals [3]. The absolute convergence of such integrals has been proven by Dixon 
and Ferrar [4]; consequently, the orders of integration may be interchanged. Moving 
the outer contour integral inside the Mellin-Barnes integrals we obtain as the inner- 
most integral Euler's first integral, which can be expressed as a product of gamma 
functions. Finally, the outer Mellin-Barnes integrals may be evaluated by summing 
their residues. Consequently, the starting point of our investigation is the representa- 
tion of (1) as 

r + )r( + 1)2 

2M+"+lr(/ + 1)r(7 + 1)r(v + 1)r~a + 2 + 3) 

X (a + 1)k (- 4) 

k!(v + )k a+ (2) 2 k 

X (X2)@+A+ 1) (1 + a + k) 

j-0 
j!(tq+ 1)j + 2 +k 

q(t++1,a+P +3+k+ij 
+ y l+ 1 1+ a+ k J' X 3F2{+ + __ 

In the above, r(z) is the well-known gamma function [1, Vol. I], and we have 
(a)k = a(a + 1)(a + 2) ... (a + k-1). 

The generalized hypergeometric function is defined by the series expansion 
[1, Vol. I] 

,( a1a2, ...,ap;z - (al)k(a2)k ..(a,)k Zk 

q bib2, ,bq/ k-O (bl)k(b2)k .. (bq)k k!t 

In (2) we have adopted the standard convention that the argument z of the hyper- 
geometric function is omitted when it equals unity. 

The representation (2) is a rather formidable result, but is interesting in that it is 
valid for arbitrarily complex values of the parameters, provided that the conditions 
for existence of the integral (1) are met. Numerically tractable cases can be obtained 
from (2) by placing further restrictions on the parameters involved. However, for 
full advantage of multiple parameter restrictions, use must be made of some un- 
obvious multiple transformations which will allow (2) to be presented in a variety of 
highly utilizable forms. Indeed, a number of extremely unobvious closed form ex- 
pressions will be presented as special cases. 

The most obvious parameter restriction is to require that the difference X- u be 
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an integer; however, X and A themselves may still be complex. Such a restriction is 
quite common. Indeed, if mr n are positive integers we have the associated Legendre 
polynomials, 

(3.a) ~p Pn() 
_ m(n+ m)! pn-4 

(n-rm)! 

and the Gegenbauer polynomials [1, Vol. I], 

(3.b) Cn'(x) = (2 
r( + 12) 4 

1_4 
(x) 

The importance of (3.b) arises when considering integrals of the generating function 
0G 

(1- 2hx + h2 =)- CP(x)hV. 
n=O 

Other special functions that can be expressed as associated Legendre functions with 
an integer difference X - u include the Chebyshev polynomials and also a special 
case of the Jacobi polynomials [5]. 

We shall require two identities [6, Section 3.5] 

{a -, au - fab - c) b e-b ea, cA 
(4) 3F2\ el / r(f-c)(e + f-a-b) 3F2( e - b -a 

\e, f r f-a-b) e e+ f - a- 

and [7, Eq. 23] 

3F2 (a b, -M ()m r(l-e + b)r(f-b + m)r(e)r(.f) 
32 el f r/(1-e+b-nm)r(f-b)P(e+m)r(f+rm) 

- e+ 1-s 17+ybb,--M 
X 3 \-+b -m1 -f +b - m 

where m is an integer, s = e + f - a - b + m, and the other parameters are 
arbitrary. Note that when s is equal to unity (5) reduces to Saalschbitz's theorem 
[8] (cf. [6]). Using these identities, we express (2) in terms of four canonical forms. 
In the event that (X - ;4)/2 = n, an integer, we have (6.a) and (6.b). 

Note that in both expressions the first sum terminates at the nth term. The value 
in having two expressions to represent the same case arises when : - X is also an 
integer, for then the second series will also terminate in one or the other of these two 
representations. Thus, if (d3 - q)12 = m, the second series in (6.a) will terminate at 
the mth term, while if (f3 - n - 1)/2 = m', the second series in (6.b) will terminate 
at the m'th term. 

Also of special importance is the case where p is an integer. If p is an even integer 
in (6.a) the first series will terminate at the smaller of n, p/2; if p is an odd integer in 
(6.b) the first series will terminate at the smaller of n, (p + 1)/2. We shall char- 
acterize this situation by saying that the series terminates early. If the second series 
terminates at m in (6.a) or at m' in (6.b), then the two respective cases in which the 
first series terminates early also correspond to the integrand in (1) being an even 
function of the variable of integration. 

We next have the case that X - ; is odd. Thus, when (X - - 1)/2 is the 
integer n, we have (7.a) and (7.b). 
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The same general comments that applied to Eqs. (6) apply here as well. Thus, the 
second series in (7.a) terminates at the m'th term whenever m' = (I-7-1)/2 is 
an integer, whereas in (7.b) the second series terminates at the mth term whenever 
m- ( - )/2 is an integer. When the integrand (1) is an even function of its 
argument, then the second series in Eqs. (7) will not only terminate, but also the 
first series will terminate early. Early termination of the first series in (7.a)/(7.b) 
corresponds to p assuming even/odd integer values, respectively. 

The first special case to be considered is p = 0. From [9], we have the identity 
(8). We obtain Eq. (9) by reversing the order of summation in (6.a), applying (8), 
and then changing back the order of summation. In (9), both (X - tz)/2 and 
(f - t7)/2 are restricted to integer values, and N is the smaller of the two. Similarly, 
from (7.a) we obtain (10) for the case where both X - tz and d - X are odd integers. 
In (10), M is the smaller of (X - - 1)/2, (f - - 1)/2. The advantage of (9) and 
(10) over the original expressions (6.a) and (7.a) is that the 3-4 generalized hyper- 
geometric series converge faster than the 2-3 series. Indeed, one can apply an ele- 
mentary error estimation analysis (such as in [10]) to the truncated hypergeometric 
series to show that after m terms the error in the hypergeometric series on the 
right of (9) is proportional to 

EmU(b e~ )m X (m (2 j+P+3/2) Em (C )2 

Thus, with each succeeding term of the terminating series, fewer terms of the cor- 
responding hypergeometric series need to be summed. A similar analysis applied to 
(6.a) gives the result 

b.e )2m( mn(v?3 /2) 

In addition to the case p 0 we should like to treat the case p = 1, for then we 
could compute all cases in which p assumes positive integer values and the integrand 
in (1) is an even function of the variable of integration. That is, for p > 2, we can use 
repeatedly the elementary relation cos2 0 = 1-sin2 0. 

The identity (8) was adequate for obtaining an inner series which converges 
faster than the original inner series when we applied it to (6.a) and (7.a), but it 
cannot be used to transform (6.b) and (7.b) since there the difference in the sums 
of the denominator terms and the numerator terms in the second series is not unity. 

We can obtain a modification of the result (8), however, by equating the co- 
efficients of ?n in (11), cf. [6], where s = u + v + w - x - y - z + n. Thus, when 
8 = 1, 2 we obtain (12). When- s = 1 in (12), we can obtain (8) by applying the 
identity to itself. Using (12), (6.b) becomes (13), where L is the smaller of the two 
positive integers, (X - t)/2 and (,B - - 1)/2. From (7.b) we obtain (14), where 
K is the smaller of the two positive integers, (X - - 1)/2 and (3 - 77)/2. In each 
of the results (9), (10), (13), and (14) the truncation error after m terms of the 
infinite series is smaller than the truncation error after m terms in the original 
representations by a factor m-2 , where j designates the term of the terminating 
series. 



ON FINITE INTEGRALS 265 

zz - 9 + X a I~~~~~~~~~~~~~~~~~~~~~~~~C 

W < | ~ ~ ~ ~ ~ ~ ~ ~ n n 
> + X~~~~~~~~l o 

l K ' -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. 

2 s t t b X i i~~~~~~~~~~~~~~~C 



266 RICHARD L. LEWIS 

+ + 

+~~~~~~~~ 
-< 

+ 

c1+ 
+ 

4 
C- 

+ 
+ 

+ cq~~~~~~~~~~ ~ 

+ + + 

+A + + 

+ -1~~~~~~~~~~11~~ 
-I- ~ ~ ~~~CaCI +QIc 

+ +~~ 
+~~~~~~~~~~~ + + 

+ 

+ b 
b~~~~~~~~~~~~~ 

'~~~F +~~~ j' 

b + + 

+ - ~~~~~~~~1 Cl 4<q -. b I 

'-4 4< I ~~~~~~~~~~ ~~~ ~~~44< ~ ~ 
C 

+Z I4 -,-- C-4 + 
+ + +~~~~~~~~~~~I 

IT + 
+ 

+ + '-l~- b 'l 

Ca + ,- -<e 

I 

+ + 
+ + 

C-1 ZL +~~~~~~~~~ :- 

+1 

4<~~~~~~~~~~~~~~~~~~~~- + ' I I + 4 x I q I,<4< 

~~~ +~~~~+ + + 
I 

4< 
+ .. ... .+.. + , t 

A ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ .- - -4- 4 

+~~~~~~~~~~ ' 

x x x x x 
x 

T~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I 



ON FINITE INTEGRALS 267 

cle." 
I 

i 

+ 11 

Q b 

+ + I 11 

Ole, 

+ 

Q:I. 
b CT 3. CT 

+ 
+ 

+ b + 

cq cq 

cq 

+ + + CT 
b 

cli + 
+ 

Q. 
Q:)L 

+ C4 :3. cq 
b + 

b 

+ + C'I 
C'l + C'l 

+ 
+ + 

P-4 b 
+ C'I 

CL 

+ 
1-0 

:3. cq I'< cq 
CA b 

+ + I + 

Ql M 
+ + 

+ + + cq + 

:3. CT + 
CL + b b 

I 
:- + + 

+ 
+ C'l b 

cq 

CLI Cq 

+ 

+ cq 

+ C4 

:3. C14 :t C9 

:3. cli 

+ C', 
+ C', 

b 
CT 

CT + + C-1 
b :L CT + + :3. CT 

CIA CIA 
+ z + 

+ C-1 
+ 

C'-. I C-1 

X 

CL C'l 
,41N cq C9 

+b + 
C14 b 
+ 

C14 
cq 

ce 



268 RICHARD L. LEWIS 

We next turn to the situation where one of the special functions in (1) disappears. 
If we set ,3 = v in (6.a) and ,B = n + 1 in (6.b), so that the first associated Legendre 
function in (1) becomes the product of (1 - x2)X/2 times unity and x, respectively, 
then Eqs. (6) will coalesce into identical results. A similar statement is true for 
Eqs. (7). Finally if the second associated Legendre function is allowed to disappear, 
Eqs. (6) and (7) coalesce into the following well-known Riemann-Liouville integral 
[11, Eq. 65, Chapter 13]. 

]l yG(l - y)(P-1~'2J>(b7/y)dy = ( i)r( +? p)(v + 3 

(15) 2 2 Y Y)(p (*bI\Iy +y - + +3 
2 J 

More interesting situations occur when v = b = 0. Let us define 

J fx'(l - x,(x)Px-(x)dx Re (p) > -1, Re (/ + 2o) > -1, 

Then, if we set a = X= + 2o- and require that 7-7 be an integer, we can again 
use (5) and obtain (16.a) from (6.a) and (16.b) from (7.a). 

Here m, n are restricted to nonnegative integer values. This method of denoting 
such quantities is used throughout. 

Note that the hypergeometric series in (16.a) and (16.b) terminate after m 
terms, and that the first sum terminates after n terms. If p is an even integer, both 
the hypergeometric functions and the series terminate early. In particular, for 
p = 0, the two equations coalesce into 

f (1 -2)arp -y-2a(X)p - (X)dX 

(17) (r)(X )/2+IP(X, + 1)r(2a+ l)( 2 )1 

22ar(X+M+l)P(cr + X?+3)F(l+of+X r )P(l+a+/32 ) 

The only restrictions on (17) are that Re (, + 2o-) > -1, and that the differences 
X - 4 and / - A- 2o both be integers. Note that the extension of the interval of 
integration implies that the integrand be an even function of x in order to yield a 
nontrivial result. Equation (17) is a generalization of a result that restricted a/2 to 
integer values [12]. 

Two special cases of (17) require immediate mention. If X - ji is an even integer, 
set ,B = ,A + 2o- to obtain 
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(18) (1- x2)^P)7y(x)dx = 

2~1F(11 + + U 
+ - r T) 

2 ~~~ 2 2 
2 

whereas if X - I, is an odd integer, set u3 = , + 2a + 1 to obtain 

f -r~TxPxd dl + x M rG+ -u+ 1)dx 1 ) 

(19) + 9 + i)r(' + + - 

2 

The integrability conditions for the results in (18) and (19) reduce to Re (a + /A/2) 
>-1. 

Now upon applying (5) to (6.b) and (7.b) we obtain (20.a) and (20.b), respec- 
tively. As before, the first sum terminates after n terms, the hypergeometric function 
terminates after m terms, and all the series involved will terminate early if p is an 
odd integer. As a check on the validity of Eqs. (20), note that if ,3 is set equal to 
2a + u + 1 in Eq. (20.a), and if ,3 is set equal to 2a + ,u in Eq. (16.a), then these 
two equations will coalesce into identical results. A similar statement can be made 
for Eqs. (16.b) and (20.b). In particular Eq. (19) follows immediately from (20.b) 
when one sets ,3 = iA + 2a and p = 1. 

Comments regarding other special cases that arise from Eqs. (6) and (7) are 
similar to those already given. Consequently, only the results will be given, along 
with the necessary restrictions. It is important to emphasize, however, that m, n 
represent nonnegative integers in the following. 

Each of the following ten special cases can be obtained from Eqs. (6) and (7) 
by selecting the parameters in the second series so that one numerator and one 
denominator term cancel, and then summing the resultant 3-2 hypergeometric 
series by means of the identity (5). In each instance t-,q is a negative integer. 

1 2-'-O?r (i + 2o,)r( +3 + 1 _ ) 
(21) ft (1 _ =2)cpfi +z(Z)PX (X)4 22F(1 + ++ + ; 2 + a + r ) 

where X-Mu = n,, + u-2T= m, Re (O) > -2; 

x(1 - x2)0Pj-2U+P(x)lI)?Jl (r)dx 

(22) X+ 2.r(l+2)r(Xr+_)[(X2)(X+2?1) - + + r - + 1 + 
- 22U+1F.cr+3?2 2 

2a'+1 r( ~3 + 2 )r( + + )r2 r +a+ 2 
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where (X--1)/2 = n, + )/2-a = m, Re (a) > -2; 

(2 
_ 

I) -}z-20-2 P( 
3 

d -2-r -1)Ir(2 + 2ar + ,) 
(23) ( )I)()PJxdX22U+2 r(o+)~i,&2r3 (23) ( - .S S (z A (X).7? - r~ + i)r# + su + 2o + 3) 

where X - = n, - - 2cr -2 = m, Re (1 + , + 2a) > -1, and further- 
more ( ? X + 2ar + 2; 

(24) j-t (1 - _X2) ')P2)dx =(X 
- 

u 

+ 1)r(x + -o) 
22,r(x + q + 1 - 2o.)r +1 

where X -u = n, X - 2or = m, Re (a- + (- + ,u)/2) > -1; 

J(I _x2) PAp2 +2 (V) 13 
- 

(X) d-V 

(25) = r(x- ( '+ I )r(c +1 + -) 

r(x+2 +2a+3)r( + -3r)r(%~-r r(2+ 2a) 

where X - = n, X + 2cr + 2 = m, Re (a+ + + u)/2) > -1; 

f2(1 - +2)0P2e+3(x)Px (x)dx 
0 

r(x - + 1)ra + 1 + 17+-) + 
7 

1 + 
A 

P(-~1)~c+1flL)~r +1+f2) 
(26) 

2 2 
~~~~ 

rAx + X7 + 2a + 4)r( a )r( - a(3 + 2a-) 

X[(>A+1(#+~a-)-2 2++f(+1 2 ) 

where (X - - 1)/2 = n, (X - t7 + 3)/2 + a = m, Re (a + (i7 + u)/2) > -1; 

f X(1 - X2)TP+20+3(X)PA -(x)dv 

rA - ,u +i)ra +1+ v+" )ra + 1 + 
4 

_ (v 1-p) 12-,r-192*,+2 
2 

(27) = ()2r(x + 2a + X + 4)r( - cr) - cr(2a + 3) 

+(27+ 22)( +X-2)(X+u?1)1 
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where (X - u)/2 = n, (X - n)/2 + a + 1 = m, Re (a + (n + /L)/2) > -1; 

(1 - ) P2v+1-X(.z)PA (.z)d. 

(28) 22+1r(1 + + 17? )r( + - + )r(+ +a)+ P - ( + _ +2 ) 
t \ X-a+-y-1) 122 2 2 2 

ir'(;' +X ++ 1)r(2+2o+, - + x)r(2 + 2) 

where X- = n, 2ca + 1 - X - = m, Re (a + (,I + u)/2) > -1; 

j X(1 - 

(29) 22 +r( I+ a+ )r 1 + +- )rl + ar + 2rl + aor 2-) (29 
M_______ 

_rr(x + 1A + 1)1r(2o + 3 + X - x)r(3 + 2a) 

X [( ~~1 + a X + Uss)( + a-+ 
+ 

(l + 7a + A) 

where (X --1)/2 = n, 1 + a- (X + n)12 = m, Re (a + (n + ,)/2) > -1; 

J X(l - X2)'P2+2 (X)Px- (x)dx 
*.0 

2'+1r( _ + t+U)r( +a + V)r +a+ r ? - i) 
= ()&i+I&-1)I2--? F .r(x +,u + 1)r(2o + 3 +-)r(3 + 2o-) 

X~ ~~ [(n ;(2)_( + A)( + 2 + 1)p_+ 1) 

+ (1+ a+ 2-)(a+' + \2)( - U )] 

where (X - /A)/2 = n, a + (1 X - 7)/2 = m, Re (a + (7a + Iu)/2) > -1. 
The author has attempted to list all nontrivial special cases resulting from Eqs. 

(6) and (7) by equating numerator and denominator terms in the second series. Also 
considered were the additional special cases that resulted when the identity (8) was 
used to modify these numerator and denominator terms. It is possible that still 
more special cases can be obtained by using the transformations discovered by 
Sears [13] to modify the numerator and denominator terms in the second series. 
However, since each of Sears' transformations result in a 4-3 generalized hyper- 
geometric series being transformed into a sum of three other hypergeometric series 
of the same type, calculations will be quite complex. 
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